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Abstract—This paper provides a parametrization of optimal anisotropic controllers for linear
discrete time invariant systems. The controllers to be designed are limited by causal dynamic
output-feedback control laws. The obtained solution depends on several adjustable parameters
that determine the specific type of controller, and is of the form of a system of the Riccati
equations relating to a H2-optimal controller for a system formed by a series connection of the
original system and the worst-case generating filter corresponding to the maximum value of the
mean anisotropy of the external disturbance.
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1. INTRODUCTION

The anisotropy-based control and estimation theory has been developed in the mid-90s as a
response to attempts to provide the generalization of the results of the well-known H2- and H∞-
controller design theories [4, 12, 13].

It clearly shows the features of the control problems, the information theory, and various classical
methods for suppressing (or mitigating) the impact of external disturbances [5]. However, unlike
some approaches where it was proposed to use artificially defined in a certain sense mixed-type
functionals, the anisotropy-based theory was focused on the method of describing the external
disturbance driven the system. It was shown that the use of theoretical functionals makes it possible
not only to describe a wide class of statistically uncertain random noises, but also generalize in a
natural way the concepts of H2- and H∞-norms making them the limiting cases of the anisotropic
norm.

In this paper, the problem of parametrization of optimal anisotropic controllers for linear discrete
time invariant systems is solved. The solution to the problem is based on the result associated with
the parametrization of H2-optimal controllers as well as with the equations for the worst-case
generating filter used in the anisotropy-based theory to form a signal with a given threshold level
of mean anisotropy.

The paper is organized as follows. In Section 2, some preliminary mathematics from anisotropy-
based theory are given. It also contains a parametrization of the H2-optimal controllers. In
Section 3, the problem of parametrization of optimal anisotropic controllers is solved. The results
are demonstrated with a numerical example. The last section contains the conclusions.
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PARAMETRIZATION OF OPTIMAL ANISOTROPIC CONTROLLERS 1187

2. PRELIMINARIES

2.1. Notations

Hm×n
2 is the Hardy space of analytic rational transfer functions P (z) =

+∞∑
k=0

Pkz
k ∈ C

m×n in the

open unit disk {z ∈ C : |z| < 1} having the finite H2-norm

‖P‖2 =
⎛⎝ 1

2π

π∫
−π

tr
(
P̂ (ω)P̂T(−ω)

)
dω

⎞⎠1/2

,

where P̂ (ω) = lim
r→1−0

P (reiω); RHm×n
2 is set of strictly proper stable rational m × n transfer

functions; ‖P‖∞ = supω∈[−2π;π) σmax(P̂ (ω)) is H∞-norm of transfer matrix function P (z) where

σmax(X) = maxk σk(X) denotes maximum singular value of a matrix X, and σk(X) = λk(X
TX).

2.2. Basic Concepts of Anisotropy-Based Theory

Usually, the object of study in anisotropy-based theory is a stable linear discrete time invariant
system

Pzw ∼
{
xk+1 =Axk +Bwk,

zk =Cxk +Dwk,
(1)

with known matrices A ∈ R
nx×nx , B ∈ R

nx×nw , C ∈ R
nz×nx , D ∈ R

nz×nw , and, in general, zero
initial conditions (x0 = 0). This system describes the relation between the dynamical processes
{xk}k�0 and {zk}k�0 driven by random input disturbance {wk}k�0. The system (1) corresponds to
its transfer function Pzw(z) = D + C(zInx −A)−1B given by the quadruple

Pzw ∼
[
A B

C D

]
: w

x→ z. (2)

If necessary, we will specify the spaces of the states, the inputs, and the outputs. Within the
discussion of the controller design problem, the plant (1) should be considered as the closed-loop
system.

The following definitions give a basic idea of the concepts of the anisotropy-based theory.
See [4, 12, 13] for more details.

Definition 1. The anisotropy of the square-integrable random vector w∈L
nw
2 is a nonzero num-

ber defined by
A(w) = min

λ>0
D(f ||pnw,λ), (3)

where D(f ||g) is the Kullback–Leibler information divergence of f with respect to g; f(x) is the

probability density function (p.d.f.) of vector w; pnw,λ(x) = (2πλ)−nw/2 exp
(− |x|2

2λ

)
is the p.d.f. of

zero-mean Gaussian vector having scalar covariance matrix λInw .

Definition 2. The mean anisotropy of stationary ergodic random sequence W = {wk}k�0 is de-
fined by the following formula:

A(W ) = lim
N→+∞

A(W0:N−1)

N
. (4)

Here, Ws:t = (wT
s , . . . , w

T
t )

T denotes the fragment of the sequence W = {wk}k�0 for k = s, s + 1,
. . . , t− 1, t.
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1188 KUSTOV

It is assumed that the system (1) is driven by a disturbance with mean anisotropy constrained
by nonnegative number a � 0, i.e. A(W ) � a. This limitation determines the ability of the nature
to generate the worst-case (in the sense of the value of the root-mean-square (RMS) gain) external
disturbance, which the H∞-theory works with, but at the same time allows it to have both spatial
and temporal correlations, which is not covered by the classic H2-theory.

Definition 3. Anisotropic norm of the system (1) driven by the input disturbance whose mean
anisotropy satisfy A(W ) � a is defined as

|||Pzw|||a = sup

{‖PzwG‖2
‖G‖2

: G∈Hnw×nw
2 ∧W = GV ∧A(W ) � a

}
(5)

where V = {vk}k�0 denotes the standard Gaussian white noise passed through the linear system
with (nw × nw)-dimensional transfer function G(z) having bounded H2-norm.

The anisotropic norm quantitatively reflects the ability of the system to amplify in the RMS
sense the input signal with the information-theoretic constraint A(W ) � a imposed on it. In the
case A(W ) = 0, we have that W = V , and |||Pzw|||0 = ‖Pzw‖2/

√
nw. In the case when the restriction

on mean anisotropy is removed, i.e. A(W ) < +∞, it can be shown that lim
a→+∞ |||Pzw|||a = ‖Pzw‖∞.

Thus, the anisotropy-based theory not only describes a wide class of external disturbances in
information-theoretic terms, but also generalizes the approaches to controller design developed
within the framework of H2- and H∞-theories.

2.3. Parametrization of H2-Optimal Controllers

A lot of works are devoted to the study of all possible aspects of the behavior of linear systems
with H2-optimal estimating controllers. In particular, a number of them describe methods for
parameterizing the entire set of H2-optimal controllers. The procedure for solving this problem,
as well as the accompanying difficulties, are described in detail in [2, 6, 9, 11] and many others.
The main idea on which the solution is based is that H2-optimal controllers are directly related
to the controllers that ensure the invariance of the output of some auxiliary system with respect
to disturbances. Hence, by parameterizing the set of these controllers, parametrization of the H2-
controllers can be obtained. The formulation of the problem of parametrization of H2-controllers,
and the solution of this problem can be given in the following form.

Consider the system

F ∼
⎡⎢⎣ A Bu Bw

Cy 0 Dyw

Cz Dzu 0

⎤⎥⎦ :

(
u
w

)
x→
(
y
z

)
, (6)

with matrices A∈R
nx×nx , Bu ∈R

nx×nu , Bw ∈R
nx×nw , Cy ∈R

ny×nx, Dyw ∈R
ny×nw , Cz ∈R

nz×nx ,
Dzu ∈R

nz×nw , where u, w, y, z are state, disturbance, measurement, and controlled vectors. Con-
sider also non-strictly causal dynamical stabilizing output-feedback controller

K ∼
[
Ac Bc

Cc Dc

]
: y

h→ u, (7)

where hk ∈R
nh , and Ac, Bc, Cc, Dc are unknown matrices. The closed-loop system formed by the

system (6) and the controller (7) can be represented by

Fcl(K) ∼
⎡⎢⎣ A+BuDcCy BuCc Bw +BuDcDyw

BcCy Ac BcDyw

Cz +DzuDcCy DzuCc DzuDcDyw

⎤⎥⎦ : w

(
x
h

)
→ z. (8)
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To solve the problem of H2-optimal control means to find the matrices of the controller (7), such
that H2-norm of the closed-loop system (8) is minimal, i.e. ‖Fcl(K)‖2 → min

K
.

It has already been noted that the problem of designing H2-optimal controller is associated
with the problem of input-output invariance of some auxiliary system [2, 3, 6, 9, 10]. To solve
the last problem, several additional definitions are introduced, closely related to the concepts of
controllable and observable invariants [1, 7]. Namely, for the system F : w

x→ z defined by the
quadruple (A,B,C,D) where x∈R

nx, w∈R
nw , z ∈R

nz , we define two sets: W(F ) and S(F ) (see,
for example, [8]).

Definition 4. The stabilizable weakly unobservable subspace W(F ) is the largest subspace
W ⊆ R

nx for which there exists a matrix Π of suitable dimensions, such that W ⊆ ker(C +DΠ),
(A+BΠ)W ⊆ W and ρ(A+BΠ) < 1.

Definition 5. The detectable strongly controllable subspace S(F ) is the smallest subspace
S ⊆ R

nx for which there exists a matrix Λ of suitable dimensions, such that im(B + ΛD) ⊆ S,
(A+ ΛC)S ⊆ S and ρ(A+ ΛC) < 1.

Let us also introduce two auxiliary matrices P andQ associated with the system (6) as the largest
in the sense of the matrix order (X  Y ⇔ X − Y  0) matrices-solutions to the inequalities

M1(P ) =

[
ATPA− P + CT

z Cz CT
z Dzu +ATPBu

DT
zuCz +BT

u PA DT
zuDzu +BT

u PBu

]
� 0, (9a)

M2(Q) =

[
AQAT −Q+BwB

T
w BwD

T
yw +AQCT

y

DywB
T
w +CyQAT DywD

T
yw + CyQCT

y

]
� 0. (9b)

For a pair (P,Q), we additionally define the matrices CP , DP , BQ and DQ in accordance with the
formulas [

CT
P

DT
P

]
[CP DP ] = M1(P ),

[
BQ

DQ

]
[BT

Q DT
Q] = M2(Q), (10)

provided that both [CP DP ] and [BT
Q DT

Q] are of full rank.

The solution to the problem of parametrization of H2-optimal controllers is given in the form of
the following theorem.

Theorem 1 [2, 10]. For a system (6), there exists an H2-optimal controller of the form (7) if
and only if the following conditions are satisfied:

(i) (A,Bu) is stabilizable,
(ii) (Cy, A) is detectable,

(iii) im(BQ −BuD
+
PR) ⊆ W(FPu

),

(iv) S(FQy
) ⊆ ker(CP −RD+

QCy),

(v) S(FQy
) ⊆ W(FPu

),

(vi) (A−BuD
+
PRD+

QCy)S(FQy
) ⊆ W(FPu

),
where

R = (DT
P )

+(DT
zuCzQCT

y +BT
u PAQCT

y +BT
u PBwD

T
yw)(D

T
Q)

+, (11)

and the systems FPu and FQy are defined by

FPu ∼
[

A Bu

CP DP

]
, FQy ∼

[
A BQ

Cy DQ

]
. (12)
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If the conditions of the theorem are met, the set of all dynamic H2-optimal controllers of the
form (7) is given by

K ∼

⎡⎢⎢⎢⎣
A+BuΠ+ ΛCy −BuD̃Cy BuC̃ BuD̃ − Λ

−B̃Cy Ã B̃

Π− D̃Cy C̃ D̃

⎤⎥⎥⎥⎦ , (13)

where the choice of matrices Ã, B̃, C̃, D̃ is limited by the fact that the transfer function

F̃ (z) = D̃ + C̃(zInx − Ã)−1B̃ (14)

belongs to the following algebraic sum of spaces: F̃ (z)∈NF +MF , where

NF =
{
N ∈R

nu×ny : DPNDQ = −R
}
, (15a)

MF =
{
M(z)∈RHnu×ny

2 : F1(z)M(z)F2(z) = 0
}
, (15b)

and

F1(z) = DP + (CP +DPΠ)(zInx −A−BuΠ)
−1Bu, (16a)

F2(z) = DQ + Cy(zInx −A− ΛCy)
−1(BQ + ΛDQ). (16b)

A solid analysis of the statement of the theorem can be found in [11]. For the case when
left/right-invertible system has no invariant zeros, the similar theorem can be formulated with a
certain changes [2]. In this case, the statement will additionally include the condition of uniqueness
of the H2-optimal controller if one exists.

3. PARAMETRIZATION OF ANISOTROPIC CONTROLLERS

3.1. Problem Statement and Solution

The problem of optimal anisotropic controller design for linear discrete time invariant systems
was solved in [13]. The conditions under which the controller was designed ensure the existence
and uniqueness of the solution, and the controller itself was specified in a strictly causal form.
This section provides a solution to a similar problem, which consists of parameterizing all optimal
non-strictly causal anisotropic controllers.

Problem 1. For a system (6) driven by external disturbance with the constraint A(W ) � a,
describe the parametric set of optimal anisotropic controllers of the form (7), i.e. parameterize
non-strictly causal stabilizing dynamical controllers minimizing the anisotropic norm of the corre-
sponding closed-loop system.

It is known that when solving the anisotropic analysis and synthesis problems in the optimal
setting, it is necessary to consider an additional mathematical construction called the worst-case
generating filter. The goal of this filter is to generate the most undesirable (in terms of RMS
gain value) external disturbance for a closed-loop system. In accordance with the results obtained
in [12, 13], for the systems of the form (2), the worst-case filter is of the form

G ∼
[
A+BL BΣ1/2

L Σ1/2

]
: v

x→ w, (17)

where L∈R
nw×nx and Σ  0 are the matrices chosen to maximize the RMS gain ‖PzwG‖2/‖G‖2

under the constraint A(W ) � a. Here and below V = {vk}k�0 — standard Gaussian white noise.
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The main idea of solving the problem 1 is to consider a system formed by a successive connection
of the worst-case shaping filter and the original system F , and then to parameterize the H2-
optimal controllers for the obtained system. First of all we note that taking into account the
shaping filter (17), the system (6) is equivalent from the point of view of the corresponding dynamic
processes to the system

F ∼
⎡⎢⎣ A Bu Bw

Cy 0 Dyw

Cz Dzu 0

⎤⎥⎦ =

⎡⎢⎢⎣
A′ +B′

wL B′
u B′

wΣ
1/2

C ′
y +D′

ywL 0 D′
ywΣ

1/2

C ′
z D′

zu 0

⎤⎥⎥⎦ :

(
u
v

) (x
h

)
→

(
y
z

)
, (18)

where the new variables are defined as uk =
(
uTk hTk+1

)T
and yk =

(
yTk hTk

)T
; the matrices used

in the expression (18) have the following structure:

A′ =

[
A 0
0 0nh×nh

]
, B′

u =

[
Bu 0
0 Inh

]
, B′

w =

[
Bw

0nh×nw

]
, (19a)

C ′
y =

[
Cy 0

0 Inh

]
, D′

yw =

[
Dyw

0nh×nw

]
, (19b)

C ′
z = [Cz 0nz×nh

] , D′
zu = [Dzu 0nz×nh

] ; (19c)

matrices L and Σ correspond to the shaping filter G (which is the worst-case one for the system (18))
generating a colored signal with the mean anisotropy less or equal to a given threshold a � 0 from
standard Gaussian white noise V = {vk}k�0.

Theorem 2. For a system (6) with an external disturbance satisfying the constraint A(W ) � a,
there is an optimal anisotropic controller of the form (7) iff the conditions (i)–(vi) of the Theorem 1
hold true. If these conditions are met, the set of all optimal anisotropic controllers of the form (7)

for the system (6) is determined by the formula uk =
(
uTk hTk+1

)T
where control uk is given by the

following set of optimal anisotropic controllers for the system (18):

K ∼

⎡⎢⎢⎣
A+BuΠ+ ΛCy −BuD̃Cy BuC̃ BuD̃ − Λ

−B̃Cy Ã B̃

Π− D̃Cy C̃ D̃

⎤⎥⎥⎦ . (20)

The matrices Ã, B̃, C̃, D̃ correspond to the transfer function

F̃ (z) = D̃ + C̃(zInx+nh
− Ã)−1B̃ (21)

belonging to the sum of subspaces F̃ (z)∈N
F
+M

F
, where

N
F
= {N ∈R

(nu+nh)×(ny+nh) : DPNDQ = −R}, (22a)

MF = {M (z)∈RH(nu+nh)×(ny+nh)
2 : F 1(z)M (z)F 2(z) = 0}, (22b)

where

F 1(z) = DP + (CP +DPΠ)(zInx+nh
−A−BuΠ)

−1Bu, (23a)

F 2(z) = DQ + Cy(zInx+nh
−A− ΛCy)

−1(BQ + ΛDQ) (23b)

and
R = (D

T
P )

+(D
T
zuCzQC

T
y +B

T
uPAQC

T
y +B

T
uPBwD

T
yw)(D

T
Q)

+. (24)
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1192 KUSTOV

The matrices CP , DP , BQ and DQ are introduced according to (10) for the matrices M1(P )

and M2(Q) associated with the system (18), and the matrices Π and Λ relate to the sets W(F Pu)
and S(FQy) introduced according to 4 i 5.

The proof of the theorem is given in the Appendix.

Corollary 1. If in the Theorem 2 it is also true that the transfer function

F ol
yw(z) = Dyw +Cy(zInx −A)−1Bw (25)

is right invertible, and the transfer function

F ol
zu(z) = Dzu + Cz(zInx −A)−1Bu (26)

is left reversible then the optimal anisotropic controller exists and is unique.

3.2. Numerical Example

As an example, consider a system of the form (6) with matrices

A =

[
−1 1
1 0

]
, Bu =

[
0
1

]
, Bw =

[
1
−1

]
, (27a)

Cy =

[
1 0
0 1

]
, Dyw =

[
0
0

]
, Cz =

[
0 0
0 1

]
, Dzu =

[
1
0

]
. (27b)

We assume that the external disturbance has the mean anisotropy bounded by a certain number
a � 0. Let us set the goal of the example as to solve the problem of parametrization of optimal
anisotropic controllers of order not higher than the order of the system itself. Moreover, for the
sake of simplicity we will require that the number of additional variables is minimal, i.e., according
to (21), F̃ (z) = D̃.

Following the required calculations, we can verify that the system (18) has the form

F ∼

⎡⎢⎢⎢⎢⎢⎢⎣

A+BwL1 BwL2 Bu 02×2 Bw

√
σ

02×2 02×2 02×1 I2 02×1

I2 02×2 02×1 02×2 02×1

02×2 I2 02×1 02×2 02×1

Cz 02×2 Dzu 02×2 02×1

⎤⎥⎥⎥⎥⎥⎥⎦ , (28)

and the corresponding matrices P and Q defined by the formulas (9) are as follows:

P =

[
P 11 02×2

02×2 02×2

]
, Q =

[
Q11 02×2

02×2 02×2

]
, Q11 = BwB

T
w

√
σ, (29)

where P 11 is the solution to the Riccati equation

P 11 = (A+BwL1)
TP 11(A+BwL1) + CT

z Cz (30a)

− (A+BwL1)
TP 11Bu(D

T
zuDzu +BT

u P 11Bu)
−1BT

u P 11(A+BwL1), (30b)
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where, in order to simplify the further calculations, we will immediately assume that L2 = 0 (one
can show this statement is true). After this, the matrices DP , CP , DQ and BQ:

DP =

[
(DP )11 01×2

02×1 02×2

]
=

[
(DT

zuDzu +BT
u P 11Bu)

1/2 01×2

02×1 02×2

]
, (31a)

CP =

[
(CP )11 01×2

02×2 02×2

]
=

[
(DP )

−1
11 B

T
u P 11(A+BwL1) 01×2

02×2 02×2

]
, (31b)

DQ =

[
(DQ)11 02×2

02×2 02×2

]
=

[
(BwB

T
w)

1/2√σ 02×2

02×2 02×2

]
, (31c)

BQ =

[
(BQ)11 02×2

02×2 02×2

]
=

[
(A+BwL1)(DQ)11 02×2

02×2 02×2

]
. (31d)

We also calculate the matrix R using (11):

R =

[
(CP )11(DQ)11 01×2

02×2 02×2

]
. (32)

Now one can check the conditions of the Theorem 2. Obviously, the pair (A,Bu) is stabilizable,
and the pair (Cy, A) is detectable. Now one needs to introduce the sets W(F P ) and S(FQ).

According to the definitions (4) and (5), the matrices Π and Λ satisfy the following conditions:

Π =

[
Π11 Π12

Π21 Π22

]
=

[ −(DP )
−1
11 (CP )11 01×2

Π21 Π22

]
, ρ(Π22) < 1, (33a)

Λ =

[
Λ11 Λ12

Λ21 Λ22

]
=

[ −(BQ)11(DQ)
−1
11 Λ12

02×2 Λ22

]
, ρ(Λ22) < 1. (33b)

To simplify the calculations, we choose Π21 = Π22 = 02×2 and Λ12 = Λ22 = 02×2. One should keep
in mind that the particular choice of these matrices leads to a narrowing of the set of the optimal
anisotropic controllers. The choice made leads to the fact that W(F P ) = R

4 and S(FQ) = {0}4,
after which the conditions (iii)–(vi) of the Theorem 2 can be trivially verified.

In this example, a controller with representation (20) under the condition F̃ (z) = D̃ is com-
pletely determined by the matrix D̃, satisfying the requirement DP D̃DQ = −R. Substituting the

previously found matrices into the last equality, we obtain that D̃ have the form

D̃ =

[
D̃11 D̃12

D̃21 D̃22

]
, (34)

where D̃11=Π11, which completes the procedure of describing all optimal anisotropic controllers (20)

associated with the relation uk =
(
uTk hTk+1

)T
.

Let us make a few important comments.

In order to obtain the final solution to the problem, the resulting system of equations must be
supplemented with a system of equations determining the worst-case generating filter, thus finding
the variables L1 ∈R

1×2 and σ > 0 (see, for example, [12]).

Also, since in the framework of the considered example, the state was observed (measured)
precisely, it seems natural to choose a controller in the form of the static state-feedback uk = Kxk.
In this case, the optimal choice of matrix K is K = D̃11.
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Let us also present a solution to this problem for a = 0 (this case was chosen for simplicity, since
there is no need to solve the auxiliary problem associated with the generating filter). It can be
shown that all controllers with the representation

K ∼
[
Ac Bc

Cc Dc

]
≈
⎡⎢⎣ 0 0 −1 1
−κ − 1.4773 −κ − 1.4773 κ + 1 κ + 2.1823

−κ − 1.4773 −κ − 1.4773 κ κ + 2.1823

⎤⎥⎦ (35)

are optimal, and have the same closed-loop system that does not depend on the specific choice
of κ (the choice of which is constrained by the inclusion κ ∈ (−2.4773; −0.4773) providing that the
spectral radius of the matrix Ac is less than 1):

xk+1 ≈
[

−1 1
−0.4773 0.7051

]
xk +

[
1
−1

]
wk, (36a)

zk ≈
[
−1.4773 0.7051

0 1

]
xk. (36b)

Note that κ ≈ −1.4773 in (35) corresponds to a static state-feedback controller uk = Dcxk.

4. CONCLUSION

The paper provides a parametrization of a set of optimal anisotropic controllers for linear discrete
time invariant systems. The results obtained can find application in solving practical problems of
navigation and control, in particular, in cases when additional constraints are imposed on the
control actions. The results can also be useful to solve the problem of parameterizing a set of
suboptimal anisotropic controllers and estimators.

APPENDIX

Proof of Theorem 2. First let us show that the conditions (i)–(vi) from the formulation of the
Theorem 2 are equivalent to the following:

(a) (A,Bu) is stabilizable,

(b) (Cy, A) is detectable,

(c) im(BQ −BuD
+
PR) ⊆ W(FPu

),

(d) S(FQy
) ⊆ ker(CP −RD

+
QCy),

(e) S(FQy
) ⊆ W(F Pu

),

(f) (A−BuD
+
PRD

+
QCy)S(FQy

) ⊆ W(F Pu
)

where matrices CP , DP , BQ, DQ and R, as well as systems F Pu
and FQy

are set in accordance
to the material presented in Section 2.3 in relation to the system (18). Note that the conditions
(a)–(f) are a direct analogue of the conditions (i)–(vi) of the Theorem 1 for system (18).

The equivalence of (i)⇔ (a) and (ii)⇔ (b) is obvious due to the notation (19). For further proof,
let us determine the relation of the sets W(FPu

) and S(FQy
) from Theorem 1 to the sets W(F Pu

)

and S(FQy
), respectively. Given the system F , using the Definitions 4 and 5, it can be verified

that there exist matrices Π and Λ such that

W(FPu
) = W(FPu

)× R
nh , S(FQy

) = S(FQy
)× {0}nh , (A.1a)

(A+BuΠ)W(F Pu
) ⊆ W(F Pu

), (A+ ΛCy)S(FQy
) ⊆ S(FQy

), (A.1b)

ρ(A+BuΠ) < 1, ρ(A+ ΛCy) < 1. (A.1c)
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After this, we can conclude that the equivalence of the conditions (iii)⇔(c) and (iv)⇔(d) holds
due to the fact that

ker(CP −RD
+
QCy) = ker(CP −RD+

QCy)× R
nh , (A.2a)

im(BQ −BuD
+
PR) = im(BQ −BuD

+
PR)× {0}nh . (A.2b)

Finally, by (A.1), the equivalence of the conditions (v)⇔(e) and (vi)⇔(e) is proved.

The structure of the controller (20) is determined by the content of the Theorem 1.

The Theorem 2 is proven.
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